Tight Bounds using Hankel Matrix for Arithmetic Circuits with Unique Parse Trees
نویسندگان
چکیده
This paper studies lower bounds for arithmetic circuits computing (non-commutative) polynomials. Our conceptual contribution is an exact correspondence between circuits and weighted automata: algebraic branching programs are captured by weighted automata over words, and circuits with unique parse trees by weighted automata over trees. The key notion for understanding the minimisation question of weighted automata is the Hankel matrix: the rank of the Hankel matrix of a word or tree series is exactly the size of the smallest weighted automaton recognising this series. For automata over words, the correspondence we establish allows us to rephrase Nisan’s celebrated tight bounds for algebraic branching programs. We extend this result by considering automata over trees and obtain the first tight bounds for all circuits with unique parse trees. 1998 ACM Subject Classification F.1.1 Models of Computation
منابع مشابه
Lower Bounds and PIT for Non-Commutative Arithmetic Circuits with Restricted Parse Trees
We investigate the power of Non-commutative Arithmetic Circuits, which compute polynomials over the free non-commutative polynomial ring F〈x1, . . . ,xN〉, where variables do not commute. We consider circuits that are restricted in the ways in which they can compute monomials: this can be seen as restricting the families of parse trees that appear in the circuit. Such restrictions capture essent...
متن کاملSome remarks on the arithmetic-geometric index
Using an identity for effective resistances, we find a relationship between the arithmetic-geometric index and the global ciclicity index. Also, with the help of majorization, we find tight upper and lower bounds for the arithmetic-geometric index.
متن کاملSome Lower Bound Results for Set-Multilinear Arithmetic Computations
In this paper, we study the structure of set-multilinear arithmetic circuits and set-multilinear branching programs with the aim of showing lower bound results. We define some natural restrictions of these models for which we are able to show lower bound results. Some of our results extend existing lower bounds, while others are new and raise open questions. Specifically, our main results are t...
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملDimension-free Concentration Bounds on Hankel Matrices for Spectral Learning
Learning probabilistic models over strings is an important issue for many applications. Spectral methods propose elegant solutions to the problem of inferring weighted automata from finite samples of variable-length strings drawn from an unknown target distribution. These methods rely on a singular value decomposition of a matrix HS , called the Hankel matrix, that records the frequencies of (s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 25 شماره
صفحات -
تاریخ انتشار 2018